Moving Average Introduzione Previsione. Come si può immaginare che stiamo guardando alcuni degli approcci più primitive di previsione. Ma si spera che questi sono almeno un'introduzione utile per alcuni dei problemi informatici relativi all'attuazione previsioni nei fogli di calcolo. In questo filone si continuerà avviando all'inizio e iniziare a lavorare con Moving previsioni medie. Spostamento previsioni medie. Tutti conoscono lo spostamento previsioni medie indipendentemente dal fatto che credono di essere. Tutti gli studenti universitari fanno loro tutto il tempo. Pensa ai tuoi punteggi dei test in un corso dove si sta andando ad avere quattro prove durante il semestre. Consente di assumere hai un 85 sul vostro primo test. Che cosa prevedere per il secondo punteggio test Cosa pensi che la tua insegnante di prevedere per il prossimo punteggio test Cosa pensi che i tuoi amici potrebbero prevedere per il prossimo punteggio test Cosa pensi che i tuoi genitori potrebbero prevedere per il prossimo punteggio del test Indipendentemente tutto il blabbing si potrebbe fare ai tuoi amici e genitori, e il vostro insegnante è molto probabile che si aspettano di ottenere qualcosa nella zona del 85 che avete appena ottenuto. Bene, ora lascia supporre che, nonostante la vostra auto-promozione per i tuoi amici, ti sopravvalutare se stessi e capire che si può studiare meno per la seconda prova e così si ottiene un 73. Ora, che sono tutti di interessati e indifferente andare a anticipare avrete sulla vostra terza prova ci sono due approcci molto probabili per loro di sviluppare una stima indipendentemente dal fatto che condivideranno con voi. Essi possono dire a se stessi, quotThis ragazzo è sempre soffia il fumo delle sue intelligenza. Hes andando ad ottenere un altro 73 se hes fortuna. Forse i genitori cercano di essere più solidali e dire, quotWell, finora youve acquistasti un 85 e un 73, quindi forse si dovrebbe capire su come ottenere circa una (85 73) 2 79. Non so, forse se l'avete fatto meno festa e werent scodinzolante la donnola tutto il luogo e se hai iniziato a fare molto di più lo studio si potrebbe ottenere una maggiore score. quot Entrambe queste stime sono in realtà in movimento le previsioni medie. Il primo sta usando solo il tuo punteggio più recente di prevedere le prestazioni future. Questo si chiama una previsione media mobile utilizzando uno periodo di dati. Il secondo è anche una previsione media mobile ma utilizzando due periodi di dati. Lascia supporre che tutte queste persone busting sulla vostra grande mente hanno sorta di voi incazzato e si decide di fare bene sulla terza prova per le proprie ragioni e di mettere un punteggio più alto di fronte al vostro quotalliesquot. Si prende il test e il punteggio è in realtà un 89 Tutti, compreso te stesso, è impressionato. Così ora avete la prova finale del semestre in arrivo e come al solito si sente il bisogno di pungolare tutti a fare le loro previsioni su come youll fare l'ultimo test. Beh, speriamo che si vede il motivo. Ora, si spera si può vedere il modello. Quale credi sia la più accurata Whistle mentre lavoriamo. Ora torniamo alla nostra nuova impresa di pulizie ha iniziato dal sorellastra estraniato chiamato Whistle mentre lavoriamo. Hai alcuni dati di vendita del passato rappresentata dalla sezione seguente da un foglio di calcolo. Per prima cosa presentiamo i dati per un periodo di tre movimento previsione media. La voce per cella C6 dovrebbe essere Ora è possibile copiare questa formula cella verso le altre cellule C7-C11. Si noti come le mosse medi durante il più recente dei dati storici, ma utilizza esattamente i tre periodi più recenti disponibili per ogni previsione. Si dovrebbe anche notare che noi non veramente bisogno di fare le previsioni per i periodi precedenti al fine di sviluppare la nostra più recente previsione. Questo è sicuramente diverso dal modello di livellamento esponenziale. Ive ha incluso il predictionsquot quotpast perché li useremo nella pagina web successiva per misurare la previsione di validità. Ora voglio presentare i risultati analoghi per un periodo di movimento previsione media di due. La voce per cella C5 dovrebbe essere Ora è possibile copiare questa formula cella verso le altre cellule C6-C11. Notate come ora solo i due più recenti pezzi di dati storici sono utilizzati per ogni previsione. Ancora una volta ho incluso il predictionsquot quotpast a scopo illustrativo e per un uso successivo nella convalida del tempo. Alcune altre cose che sono importanti per notare. Per un periodo di m-movimento previsione media solo il m valori dei dati più recenti sono usati per fare la previsione. Nient'altro è necessario. Per un periodo di m-movimento previsione media, quando si effettua predictionsquot quotpast, si noti che la prima previsione si verifica nel periodo m 1. Entrambi questi aspetti sarà molto significativo quando sviluppiamo il nostro codice. Sviluppare la Moving Average funzione. Ora abbiamo bisogno di sviluppare il codice per la previsione media mobile che può essere utilizzato in modo più flessibile. Il codice segue. Si noti che gli ingressi sono per il numero di periodi che si desidera utilizzare nella previsione e la matrice dei valori storici. È possibile memorizzare in qualsiasi cartella di lavoro che si desidera. Media mobile Funzione (storici, NumberOfPeriods) As Single Dichiarazione e inizializzazione delle variabili ARTICOLO Dim come variante Dim contatore come Integer Dim accumulo As Single Dim HistoricalSize come numero intero inizializzazione delle variabili contatore 1 Accumulo 0 Determinazione della dimensione della matrice storica HistoricalSize Historical. Count per il contatore 1 Per NumberOfPeriods accumulare il numero appropriato di più recenti valori precedentemente osservati accumulo accumulazione storica (HistoricalSize - NumberOfPeriods Counter) media mobile accumulo NumberOfPeriods il codice verrà spiegato in classe. Si desidera posizionare la funzione sul foglio in modo che il risultato del calcolo appare dove dovrebbe come il following. Weighted Moving calcolatore di media Dato un elenco di dati sequenziali, è possibile costruire la n-point ponderata media mobile (o ponderata media mobile ) trovando la media ponderata di ogni insieme di n punti consecutivi. Ad esempio, si supponga di avere i dati insieme ordinato 10, 11, 15, 16, 14, 12, 10, 11, e il vettore di ponderazione è 1, 2, 5, dove 1 è applicata al più vecchio termine, 2 si applica a medio termine, e 5 viene applicato il più recente termine. Poi il 3 punti medio ponderato in movimento è 13,375, 15,125, 14,625, 13, 11, 10.875 medie mobili calibrati sono usati per lisciare i dati sequenziali dando più importanza a certe condizioni. Alcune medie ponderate più importanza alla termini centrali, mentre altri preferiscono termini più recenti. analisti di borsa spesso usano una media ponderata linearmente n - Point movimento in cui il vettore di ponderazione è 1, 2. n-1. n. È possibile utilizzare la calcolatrice di seguito per calcolare la media ponderata di rotolamento di un insieme di dati con un dato vettore di pesi. (Per la calcolatrice, inserire pesi come un elenco separato da virgole di numeri senza le staffe e.) Numero di termini in ponderata n - Point Media Mobile Se il numero di termini nella serie originale è d e il numero dei termini utilizzati nel ogni media è n (cioè, la lunghezza del vettore dei pesi è n), allora il numero di termini nella sequenza media mobile sarà Ad esempio, se si dispone di una sequenza di 120 archivi prezzi e prendere una ponderata media mobile 21 giorni dei prezzi, allora la sequenza di media mobile ponderata avrà 120 - 21 1 100 dati points. Weighted medie mobili: i principi fondamentali Nel corso degli anni, i tecnici hanno trovato due problemi con la media mobile semplice. Il primo problema è il lasso di tempo della media mobile (MA). La maggior parte degli analisti tecnici ritengono che l'azione dei prezzi. l'apertura o la chiusura del prezzo delle azioni, non è sufficiente su cui dipendere per prevedere correttamente i segnali di acquisto o vendita delle azioni di crossover MAs. Per risolvere questo problema, gli analisti ora assegnare più peso ai dati relativi ai prezzi più recenti utilizzando la media mobile esponenziale livellata (EMA). (Per saperne di più nell'esplorazione esponenziale Pesato media mobile.) Un esempio per esempio, utilizzando un 10-giorni MA, un analista avrebbe preso il prezzo del 10 ° giorno di chiusura e moltiplicare questo numero per 10, il nono giorno per le nove, l'ottavo giorno per otto e così via alla prima della MA. Una volta che il totale è stato determinato, l'analista poi dividere il numero per l'aggiunta dei moltiplicatori. Se si aggiungono i moltiplicatori del 10-day MA esempio, il numero è 55. Questo indicatore è conosciuta come la media mobile linearmente ponderata. (Per la lettura correlata, controllare semplici medie mobili Fai Trends distinguersi.) Molti tecnici sono convinti sostenitori del esponenzialmente lisciato media mobile (EMA). Questo indicatore è stato spiegato in tanti modi diversi che confonde gli studenti e degli investitori. Forse la migliore spiegazione viene da John J. Murphys: Analisi tecnica dei mercati finanziari, (pubblicato dal New York Institute of Finance, 1999): Il modo esponenziale lisciato movimento indirizzi medi sia dei problemi connessi con la media mobile semplice. Innanzitutto, la media esponenziale livellata assegna un peso maggiore ai dati più recenti. Pertanto, è una media mobile ponderata. Ma mentre assegna minore importanza ai dati dei prezzi passati, esso include nel suo calcolo tutti i dati nella vita dello strumento. Inoltre, l'utente può regolare il coefficiente di dare maggiore o minore peso al più recente prezzo giorni, che viene aggiunta ad una percentuale del valore giorni precedente. La somma dei due valori percentuali aggiunge fino a 100. Per esempio, l'ultimo giorni prezzo potrebbe essere assegnato un peso di 10 (.10), che viene aggiunto al giorno precedente peso di 90 (.90). Questo dà l'ultimo giorno 10 del peso totale. Questo sarebbe l'equivalente di una media di 20 giorni, dando l'ultimo giorni prezzo un valore inferiore di 5 (.05). Figura 1: esponenziale Smoothed media mobile È possibile che questo grafico mostra il Nasdaq Composite Index dalla prima settimana di agosto 2000 al 1 ° giugno 2001. Come si può vedere chiaramente, l'EMA, che in questo caso utilizza i dati relativi ai prezzi di chiusura nel corso di un periodo di nove giorni, ha segnali di vendita precisi sul 8 settembre (contrassegnato da un nero freccia verso il basso). Questo era il giorno in cui l'indice rotto sotto il livello 4.000. La seconda freccia nera indica un'altra tappa verso il basso che i tecnici sono stati effettivamente aspettavano. Il Nasdaq non ha potuto generare abbastanza volume e interesse da parte degli investitori al dettaglio per rompere il marchio 3.000. E poi tuffò di nuovo a toccare il fondo a 1619,58 su aprile 4. La fase di rialzo del 12 aprile è contrassegnato da una freccia. Qui l'indice ha chiuso a 1,961.46, e tecnici ha cominciato a vedere i gestori di fondi istituzionali che iniziano a prendere alcuni affari come Cisco, Microsoft e alcuni dei problemi legati all'energia. (Leggi i nostri articoli correlati: Moving Buste media:. Raffinazione uno strumento popolare Trading and Moving Average rimbalzo) Una misura del rapporto tra un cambiamento nella quantità domandata di un bene particolare e una variazione del suo prezzo. Prezzo. Il valore di mercato totale in dollari di tutto ad un company039s azioni in circolazione. La capitalizzazione di mercato è calcolato moltiplicando. Frexit abbreviazione di quotFrench exitquot è uno spin-off francese del termine Brexit, che è emerso quando il Regno Unito ha votato per. Un ordine con un broker che unisce le caratteristiche di ordine di stop con quelli di un ordine limite. Un ordine di stop-limite sarà. Un round di finanziamento in cui gli investitori acquistano magazzino da una società ad una valutazione inferiore rispetto alla stima collocato sul. Una teoria economica della spesa totale per l'economia e dei suoi effetti sulla produzione e l'inflazione. economia keynesiana è stato sviluppato.
No comments:
Post a Comment